
Organized Learning: 
The Case of Scientists Working in a Mission Agency 

 
 The dominant theme in a recent review of the organizational learning paradigm 
(Argote and Miron-Sepktor, 2011) is the accumulation of experience leads to knowledge. 
This perspective becomes particularly interesting in the context of basic and applied research, 
which is where one could argue that learning is organized or “mindful” to use the term of 
Argote and Miron-Spektor, 2011 because it is the objective of the organization. While there 
are a number of studies of product development Brown and Eisenhardt, 1995) in the 
industrial and service sectors, to our knowledge there are none of scientific research in the 
public sector, especially in mission agencies that in many ways are designed to produce new 
services for the public.  Scientific research is of course a special kind of learning from 
experience and the issue is what kinds of organizational practices encourage this.  This 
context provides an opportunity to advance the theory of organizational learning. 
 Learning at the individual level can be measured by various kinds of cognitive 
approaches such as a scale on the effectiveness of learning or by reductions in the number of 
modifications made in software products. At the organizational level, innovation represents 
an important way of describing the products of learning, as for example changes in the 
characteristics of the products or services provided (Argote and Miron-Sepktor, 2011; (Boh, 
et al., 2007; Hage and Meeus, 2006) or more directly by changes in the strategy and tactics of 
NGOs attempting to change the behavior of pregnant women (Valadez et al.

 The objective of this paper is to build upon the framework of McGrath and colleagues 

, 2005). Still a 
third way is to measure the presence of learning mechanisms appropriate for scientists such 
as critical thought, cross-fertilization of technical ideas, and two patterns of communication 
about research projects. In this way, one can separate measures of learning from the effects of 
learning as indicated in improved performances such as productivity or innovation or in the 
study of scientific research from papers and patents. These latter measures are not relevant 
for the most part in this applied research agency concerned more with ensuring the accuracy 
of information obtained from satellites and where the output measures differ considerably 
across the three divisions.  Therefore, the focus on four kinds of learning mechanisms appears 
to be a more appropriate kind of learning measure. 

(Arrow et al., 2000, McGrath and Argote, 2001) as cited in 

 In the recent review cited above, Argote and Miron-Sepktor (2011) emphasizes the 
importance of members, tools, tasks and networks connecting members and tools.  We build 
upon this framework by examining the impact on learning of:  (1) three ways of describing 
research tasks, (2) several kinds of networks and (3) several characteristics of the research 
staff or members. The impact on learning is examined for each of the four mechanisms 
described above as well as an index constructed from these components. The first section 

Argote and Miron-Sepktor, 2011: 
1125) and explore its usefulness in tthe Center for Satellite Applications and Research 
(hereafter STAR), a part of the National Oceanographic and Atmospheric Agency (hereafter 
NOAA). A great deal of NOAA’s work in climate and weather analysis relies on the use of 
remote sensing (satellite) data, and STAR is responsible for the development of satellite 
instruments and of algorithms that translate data from satellites into formats and products that 
can be used by NOAA analysts and any interested parties around the world, most particularly 
weather forecasters and academics in oceanography and atmospheric research. For example, 
STAR has developed products for measuring the thickness of arctic sea ice, predicting 
harmful algal blooms in the Chesapeake Bay, and detecting wild forest fires, among many 
others (Powell, Ohring, Kalb, et al., n.d). In this respect, STAR is typical of the many kinds 
of research centers in public research organizations that remain largely invisible but develop 
public use data and original research.  



discusses the theoretical framework of tasks, collaborative networks, and members and the 
specific hypotheses that are tested while the second section considers the methods used to 
collect the data for this testing. The third section reports the support for the hypotheses for 
both mechanisms of learning as well as their combination in an index of learning while the 
fourth section reports a multivariate analysis of the impact of these different ways of 
describing how research is organized.  

Theoretical Framework 
 Scientific research is organized learning where one attempts to accelerate the 
accumulation of experience and its conversion into knowledge. It is not, of course, the only 
kind. Another important type is quality-work circles where workers attempt to solve 
problems associated with productivity  (Nonaka and Takeuchi, 1995). Another type is 
product-development teams, which have been extensively studied as well (Brown and 
Eisenhardt, 1995; Keller, 2001). But scientific research stands apart as a more interesting 
form of “mindful” learning since it is precisely concerned with the production of knowledge 
including knowledge that does not have any necessary immediate commercial benefit as in 
this specific case. Some of the free products that STAR provides give commercial benefits to 
other organizations  such as local weather forecasters. However, the majority of the products 
are for the benefit of weather forecasters and geophysicists attempting to understand climate 
and climate change.  
 Focusing on the learning of knowledge workers is a particularly important extension 
of the organizational learning model. Although the occupational literature has observed a 
gradual movement recently towards an appreciation of knowledge workers (Crech, Rubineau, 
Selby and Seron, 2011; Gorman and Sandefur, 2011; Sandefur, 2009), applied scientists have 
been largely ignored. A particular important reason for studying how knowledge workers 
learn in general and scientists, whether basic or applied in particular, is because they are 
perceived to be an essential ingredient in post-industrial society (Bell, 1973) and are certainly 
an important part of what some have called the creative class (Florida, 2004). 
 The starting point for the development of ideas about how factors might impact on the 
amount of learning that occurs in applied research work is to consider the kinds of tasks. In 
this context, it is important to make a distinction between two kinds of tasks in scientific 
research because of the special nature of STAR.  While the bulk of its research is applied, at 
the same time some researchers at STAR are to a certain extent and especially in the three 
cooperation branches that are part of one division focused on basic research about satellites or 
about the atmosphere and the ocean and their interactions.   Our first set of hypotheses 
examines what might be called general research tasks and more specifically what percent of 
the time in spent in each kind of activity.  In contrast, the second set of research tasks focused 
on applied tasks found only in STAR.  Finally, still a third way of describing the research 
tasks for both basic and applied research is the relative emphasis on various processes that 
lead to innovation.   
 As important as it is to identify tasks, networks, and member characteristics that 
facilitate the learning mechanisms as we have defined them, the reverse is equally important.  
How do tasks in particular  prevent learning? That is, by far, the more provocative question, 
which highlights what is usually missing in studies of organizational learning.  Can we 
identify those organizational practices that would appear to be diminish learning. 
Basic Scientific Research Tasks 
 One might make the assumption that all research results in some kind of learning even 
if it is only learning what kind of experimental manipulation does not work, but this ignores 
the fact that a lot of research work is routine, in which little actual learning occurs. What is 
needed is a list of research tasks and in particular ones that can be applied across a wide range 
of disciplines and in both the public and private sectors. The specific research activities that 



we studied in STAR, common to all kinds of research, including new product development, 
are the percent of time spent in: 

• Routine technical tasks; 
• Fundamental understanding; 
• Planning, reviewing papers, and documentation; 
• Administration and organizational paper work; 
• Organizational training and public relations. 

These five sets of tasks, each of which can be further delineated, indicate how complex is the 
job of a scientist. The essential distinction between the third and the fourth activity on this list 
is between professional tasks associated with scientific research and bureaucratic 
responsibilities because the research is conducted in an organization, in this instance a public 
research laboratory with a mission. A recent study (Hage, et al.

 Given this list, our hypothesis is: 

, 2012) found a similar set of 
tasks useful for describing the differences between six major scientific areas of research--
biology, chemistry, geosciences, alternative energy, material sciences, and interdisciplinary 
areas. As necessary as routine work, planning and review, and administration are, these 
research tasks are much less likely than work addressing fundamental understanding to lead 
to learning. This is not to say that over time as one gains experience doing each of these 
tasks, there might not be gains in the speed or effectiveness with which they are 
accomplished, two other ways of discussing learning, but they are not likely to be associated 
with the learning mechanisms that we have described above because they are less likely to 
lead to the creation of the kinds of knowledge that are the objectives of this mission agency.  

1a. The greater the amount of time spent on research with the objective of fundamental 
understanding, the greater the amount of learning. 
Since we suggested above that it is important to identify when learning for the purposes of 
knowledge creation does not occur, we could add another four hypotheses representing the 
lack of learning. But most of these are likely to be non-significant and for several reasons. 
However, one activity in which higher allocations of effort might be expected to lead to less 
learning is the amount of time spent on organizational tasks such as managing contractors (an 
important task in STAR) and paper work not related to research. Thus, a second hypothesis: 
1b. The greater the amount of time spent on organizational tasks, the less the amount of 
learning. 
Applied Scientific Research Tasks 
 Above, we suggested that STAR was concerned with both basic and applied 
knowledge creation. This poses the question of what are some of the specific kinds of 
knowledge that this research unit should be trying to develop. This is an important point in 
developing a framework for organized learning. To describe research only in general terms 
misses the specifics of knowledge creation appropriate for a specific discipline and/or 
research organization. Each of the major disciplinary areas listed above has specific kinds of 
intellectual problems that have to be solved, i.e. fundamental understanding comes in 
different shapes and sizes. And just as we would expect that not all general research tasks 
lead to learning we also hypothesize that some intellectual problems within a specific 
disciplinary area/organizational context are not only more interesting than others but are more 
likely to be “better teachers”. For the geosciences in STAR, the following list describes the 
range of problems that these scientists are attempting to solve: 

• Locating the causes of errors in data; 
• Developing new algorithms; 
• Reviewing the designs of sensors; 
• Analyzing predictive models. 



In this instance, we hypothesize that two of these tasks are more likely to result in learning 
because they are more closely connected to the specific aims of the geophysicists who work 
in STAR, that is providing new algorithms for the benefit of the country, e.g. an early 
warning system for coral reef bleaching, and better predictions of the tracks of hurricanes. 
Hence, the following hypotheses: 
2a. The greater the amount of time spent developing new algorithms, the greater the amount 
of learning; 
2b. The greater the amount of time spent analyzing predictive models, the greater the 
amount of learning. 
Locating the causes of errors and also considering how best to design sensors for capturing 
data reflect quite different ways of accumulating experience but they are less likely to lead to 
knowledge creation as quickly as the other two tasks.  

Innovative Research Process Tasks  
 Research processes reflect the interconnection between how the research is conducted 
and the influence of the organizational context. In this study, three important kinds of 
research processes are explored: challenge, creativity, and risk-taking. The latter two have 
long been associated with firms that are more innovative. The central argument is that if 
managers encourage individuals to be more creative, such as setting aside free time for this, 
and also encourage risk-taking, will this lead to more innovation via the process of learning. 
In particular, freedom to explore new ideas and being able to take risks are graduations 
specifically adapted to the scientific research and risk-taking is a key idea in the literature on 
innovation (Hage, 2011; Sicotte and Langely, 2000). But while challenge has not received the 
same attention in the literature on innovation as creativity and freedom to explore new ideas, 
it is quite similar in that the assumption is that the greater the challenge of the scientific 
problem the greater the opportunities for learning. Argote and Miron-Sepktor (2011) mention 
two of these important research processes as part of the context of learning: risk-taking and 
creativity. Those of high status and power tend to ignore the ideas of those beneath them in 
rank while lower ranking individuals are less likely to take risks (Bunderson and Reagans, 
2011). When managers encourage risk-taking, then scientists are more likely to learn. Argote 
and Miron-Sepktor (2011) also note the importance of connecting studies of creativity or 
knowledge creation to the study of learning. These three kinds of research processes all have 
the same essential argument namely the more that scientists are encouraged to be creative and 
to explore new ideas and accept challenging problems, all ways of describing taking risks, the 
more likely they are to learn. Three hypotheses that can be generated from this argument are: 
3a. The greater the amount of time spent working on challenging problems, the greater the 
amount of learning; 
3b. The greater the amount of time spent on being creative, the greater the amount of 
learning.  
3c. The greater the amount of time spent on exploring new ideas, the greater the amount of 
learning. 
These three research processes also relate to another literature, namely that on job satisfaction 
from intrinsic rewards (Johnson, Mortimer, Lee, et al.

 Closely related to the above research processes is the question of the autonomy of 
scientists in pursuing research. Scientists will learn more when they have authority to make 
decisions about their research. Thus, this hypothesis: 

, 2007). One can easily imagine how 
rewarding scientists who work in public research laboratories would find these kinds of 
research processes. They go to the heart of what it means to be a scientist.  

 4. The greater the autonomy of researchers the greater the amount of learning. 
Research Networks and Collaborations 



 An important and common characteristic of research is that it usually involves 
working with others (Hand 2010). Just as we have three dimensions for describing research 
processes, there are three ways of characterizing the nature of working with others: working 
in teams, networks across teams, and external networks. Research teams are much like 
quality work circles, a way of encouraging individuals to work together to solve problems. Of 
course, the relative importance of status and power may interfere with how effective teams 
are for learning. External networks in the context of STAR means working not only with 
other units of NOAA but also with the National Aeronautical and Space Administration, the 
U.S. Navy, Lockheed Martin, etc. In various ways, each of these measures builds upon a 
fundamental finding in the research literature on innovation, namely that diversity is more 
likely to lead to innovation. Here the issue is the sheer diversity of members is likely to 
increase learning, the prior step before innovation. The specific hypotheses are: 
5a. The greater the amount of time spent in teamwork both in the project and in other 
projects, the great the amount of learning; 
5b. The greater the amount of time spent in external networks, the greater the amount of 
learning. 

Just as the three processes of research relate to another literature, namely that on job 
satisfaction because they represent intrinsic rewards, the three measures also refer to another 
part of this same literature, namely what is called new work practices, that is the tendency for 
each of these to become more common in all kinds of organizations (Homan, Wall, Clegg, et 
al. 2003; Kalleberg, Marsden, Reynolds, et al. 2006) but these have not been related to the 
amount of learning that occurs. 
The Quality and Diversity of the Technical Staff 
 An aspect of research as organized learning that is frequently ignored is that there is 
an array of equipment that has to be kept in good working order for experiments to be 
conducted. In some respects, NOAA represents an extreme of this because not only are there 
a number of different satellites but planes, ships, radar stations, weather stations, etc. are 
collecting enormous amounts of data around the world. And while STAR is primarily 
concerned with the signals from satellites, these require a considerable amount of technical 
back-up as well. Given this line of reasoning then the argument would be that the quality and 
the diversity of technical staff should also impact on the ability of scientists to learn as well. 
We offer two hypotheses for testing this line of reasoning: 
6a. The greater the amount of high quality technical staff, the greater the amount of learning; 
6b. The better the mix of the staff, the greater the amount of learning. 
 In summary, the more that work concentrates on what might be called basic research, 
emphasizes challenge, creative and high risk processes, and is completed in collaborative 
networks, with competent staff and that researchers have authority to make decisions about 
their research the more learning is likely to occur.  

Methods 
 The primary data used in this study come from a survey designed specifically for 
research organizations and scientists. The survey was developed through an extensive 
literature review with input from 15 focus groups that included bench scientists, engineers 
and technologists, as well as their managers, across various R&D tasks, and it has been field-
tested in a number of research organizations (Jordan and Streit 2003; Jordan et al. 2003; 
Jordan 2005). In total, the survey encompasses 42 job attributes that were identified as 
critical for creating an environment that fosters excellent research. In this paper, we explore 
only those items related specifically to how learning is organized.  
 The data on STAR were collected in three waves, each two years apart 2005 2007, 
and 2009. The response rates were respectively 79 (n = 58), 56 (n = 44), and 50 percent (n = 
31). All scientists working at STAR were invited to participate. The decline in the number of 



scientists reflects the impact of retirements and the gradual movement of more and more 
work into contracts with private contractors. It is more difficult to explain the declining 
response rate.  
 After entry into a computer, the data were edited and corrected. A small number of 
incomplete questionnaires were completed with an iterative regression procedure 
{Raghunathan, 2001 #1731}. This, and the statistical analyses, were done with R software {R 
Core Team, 2012 #2995}. 
The Measurement of Learning 
 In the introduction, we suggested that learning at the individual level can be separated 
from the effects of learning as measured by increased productivity or innovation, changes in 
product characteristics or in strategies and tactics (Boh, et al., 2007; Valadez, et al.

 Cross-fertilization of ideas is an obvious way of learning for scientists but less 
obvious is the importance of critical thought. Too much emphasis has been placed on having 
good ideas and not enough on how to separate what part of a good idea is actually bad and 
needs to be rectified. This is the task of critical thought. Good communication facilitates the 
exchange of ideas and supports critical thought. 

 2005). 
This approach focuses on the mechanisms or ways in which scientists learn. In this research, 
we use two mechanisms of learning and two measures of communication: critical thought and 
cross-fertilization, and good communication among researchers on projects and between 
researchers and management about their projects. While this represents a cognitive approach, 
it does allow us to separate the way in which learning occurs from its consequences.  As we 
have already suggested, the specific kinds of outputs such as new algorithms or reduction in 
errors or papers vary in importance across the branches within the divisions (a total of nine) 
and occur with different frequency, making the measure of the consequences of learning 
difficult in this study.  

 For each mechanism of learning, the scientists were asked to report what percent of 
the time, it was true among five categories: 0 to 20%, 21 to 40%, 41 to 60%, 61 to 80%, and 
81% to 100%. The means for each wave are reported in Table One, where 3 represents 41 to 
60% of the time. Critical thought increased from 3.67 in 2005 to 4.07 in 2007 but then 
declined to 3.58 in 2009 while cross-fertilization also increased slightly from 3.05 to 3.38. 
Communication on projects increased in each panel and communication with management 
increased from 2005 to 2007. Combining these, the index of learning increased from 2005 to 
2007 and again to 2009. Given the small sample size, however, these differences are not 
statistically significant. The index of learning represents the combination of the responses to 
the four questions, which are first standardized then added together, and then the index is 
rescaled to range from 1 to 5 to make it comparable to the constituent items. Cronbach’s 
alpha for the index is 0.80. 
 Despite this high level of internal consistency, in the first phase of the analysis, we 
report zero-order correlations between the attributes describing how research is organized and 
its impact on each component of the learning index as well as the learning index. The 
analysis provides some insights into when critical thought is maximized as distinct from 
cross-fertilization, which is the more commonly reported mechanism of learning. It should be 
emphasized that we are not measuring organizational learning but instead the learning of 
individual scientists in what might be called an organization dedicated to learning. 
The Measurement of the Ways in Which Research is Organized 
 A first question about the way in which research is organized asks scientists to report 
what percentage of the time they allocate to each of five kinds of basic research tasks: routine 
tasks, research for fundamental understanding, professional tasks, organizational tasks, and 
training, public relationships and other outreach categories. This was followed by a second 
question asking for the time allocated to research for fundamental understanding, what 



percent is involved each of following applied objectives: causes of errors, new algorithms, 
designs of sensors, and analyzing predictive weather models. All of these objectives are part 
of STAR’s mission within NOAA. 
 The questions about research processes and collaborative networks were framed in the 
same way as the two questions about learning. The same five-point scale representing what 
percentage of the time of a particular attribute is present was used to measure the extent of 
the emphasis on creativity, teamwork, etc. 
 Since the extent of learning is constructed with four questions, we also constructed 
indices with these questions about how the research work is organized as defined in Figure 
Two. In each instance, the separate indicators were standardized before being combined into 
an index and then rescaled from 1 to 5.  

Research Findings 
 The findings are reported in two sub-sections, the first examines the zero-order 
correlations of each of the indicators of how research is organized and the second then looks 
at indices that combine the indicators of research processes, networks and technical staff to 
determine the relative strength of each major theme in explaining each component, critical 
thought and cross-fertilization, and their combination into the learning index. The 
components of these three indices are listed in Figure One. The first analysis allows us to 
understand if there are any interesting substantive differences between specific indicators and 
their relationships with each learning mechanism and with the index of learning. By isolating 
which indicator is most important, one can provide advice to research managers and also 
understand better the second analysis that focuses on the indices. Presumably, the most 
important component is the main driver. However, we also want to be sure that the index of 
learning is more than the sum of its components, that is a specific indicator or index has a 
stronger relationship with the learning index than with each separate component.  
The Attributes of How Research is Organized and Learning  
 The surprising complexity of research work is readily observable in Table Two where 
the scientists in STAR have indicated the amount of time they allocated to five research tasks 
(we have ignored the other category). Also, these five tasks separately are complex 
combinations of many disparate tasks. Of these five, only research for fundamental 
understanding has a significant positive impact on mechanisms of learning and also on the 
index. The small but non-significant relationships of the other tasks, except for organizational 
work, are to be expected since it is basic research that is most specifically orientated towards 
the kind of learning that we have measured. Perhaps the most interesting finding is that 
organizational tasks such as managing contactors and paper work that are bureaucratic 
requirements because STAR is part of a larger organization, NOAA, has a significant 
negative relationship to two of the indicators of learning and the learning index. This pattern 
of findings suggests that the index of learning is capturing what we have suggested that it 
does, namely scientific learning as distinct form other kinds of experiences that can 
accumulate into knowledge. Thus, hypotheses 1a and 1b are supported.  
 What fundamental research means varies by the nature of the disciplinary field and 
then even by the goals of the particular research organization. For the disciplinary field of 
geophysicists and the mission of STAR, fundamental research has four different kinds of 
interpretations. As can be seen in Table Three, only one of these specific objectives, namely 
the review of models, leads to learning as measured by these mechanisms, and then only with 
cross-fertilization and within-project communication. Contrary to our hypothesis 2a, the 
development of new algorithms does not produce any learning. The larger conclusion to draw 
from this table is that most of the associations are essentially zero. Given the lack of a 
relationship between reviewing models and critical thought, hypothesis 2b, is only partially 
supported. It would appear that the more important relationship is the time spent on 



fundamental research and not which research objective within the context of geophysical 
sciences. 
 Once we move to research process tasks, we find that the zero-order correlations 
become much stronger (Table Four). All three of them have not only significant relationships 
with each learning mechanism, with the single exception of the correlation between creativity 
and project communication, but perhaps more importantly, the association with the index of 
learning is stronger than with its components for two of the three processes, suggesting the 
advantage of constructing such an index. Of these three processes, it is challenge that has by 
far the strongest impact on learning. Surprisingly, at least for us, it is creativity that has the 
weakest association of the three. This has interesting implications for managers of research 
projects. It suggests that one learns more by tackling difficult problems than by engaging in 
incremental or normal science. Another interesting observation is that for all three research 
process tasks the association with critical thought is ever so slightly stronger than the one 
with cross-fertilization, although these differences are not statistically significant. The three 
hypotheses, 3a, 3b, and 3c, are thus supported. When compared with the relatively meager 
findings about the nature of the research, these findings lead to us to a critical conclusion. It 
is not the time spent on research or the specific objective but how the time is spent regardless 
of the amount that simulates learning. 
 The measure of research autonomy also has a significant correlation with each of the 
learning indicators and to the index of learning (Table 4). As with the other process variables 
the highest correlation with challenge is the largest, but the correlation with project 
communication is only slightly smaller. Hypothesis 4 is thus supported. 
 A similar set of interesting findings about the kinds of collaborative networks is to be 
found in Table Five. As before, the strongest association is with the index of learning in 
comparison to individual components, with two exceptions – teamwork on projects and the 
frequency of external networks are slightly more closely correlated with good project 
communication than with learning. The difference between the first and second indicator of 
networks is between collaboration within the same research project and collaborations  with 
researchers in other projects. Hypothesis 5a combined these two ideas; as can be seen both 
are supported. However, it is interesting in this context to observe that the correlations 
suggest that sharing with other project teams produces greater cross-fertilization than within-
project teamwork. While this may seem obvious, it is still worth demonstrating. Although 
hypothesis 5b, external networks, is supported, it is interesting to note that it has the weakest 
correlation with learning of the different measures of teamwork and communication. It is here 
that one might have expected a much stronger impact on cross-fertilization than with total 
project communication. This reflects the fact that not all of the scientists are involved in 
external relationships. 
 Equally interesting and in contrast to the previous table, the attributes of collaboration 
have stronger associations with cross-fertilization than with critical thought. In the case of 
teamwork and networks with other projects, which has an association of .33 with critical 
thought and .56 with cross-fertilization, the difference is quite large. 

In the theoretical framework, we had suggested that for science, the quality of the 
technical staff is important and should be considered as part of the way in which research is 
organized. While the sociology of science literature has emphasized the importance of the 
collaborating scientists, the technical staff has been ignored. In disciplines such as 
geophysics, the quality of technical staff is very important because of the large amounts of 
equipment involved in measuring geophysical properties. Therefore, it is not surprising that 
the quality of this staff does impact on learning. The last attribute, the mix of specialties, 
again points in the general finding in the management of innovation literature where cross-



functional teams are related to innovation. Hypotheses 6a, and 6b are well supported in this 
table. 
 Following up on this point about the mix of specialties, one could go further and 
argue that many of the measures in Table Five are stating that diversity increases cross-
fertilization, which is what leads to innovation (Hage and Meeus, 2006). Total project 
teamwork is more important than the individual project on which a scientist is working. 
Communication with management is more important than communication within the project. 
The one major exception to this line of reasoning is external networks but, as we have noted, 
not all of the scientists work with other agencies. 
 This paper began with the idea that the amount of time spent on fundamental research 
and even the objective of this research would be related to learning. Apparently this is not the 
case. But the follow-up observation is perhaps more interesting. It is not the amount of time 
spent nor the objective but instead how time is spent (processes of research) and with whom 
(kinds of networks and the nature of the technical staff) that affect learning. We now need to 
explore which of these major ways of describing the organization of research is most critical. 
The Relative Importance of Attributes Describing the Organization of Research  
 To explore the relative importance of these different ways of describing the 
organization of research, we have constructed indices that add the various attributes together 
as indicated in Figure One. To give approximately equal weight to each index, we have used 
three measures of collaborative networks that make the most theoretical sense -- within-
project teamwork, cross-project teamwork, and external networks -- all of which are 
measures of diversity. We have only two indicators for the technical staff. We experimented 
with constructing an index combining the amount of time spent on fundamental research with 
the objective of reviewing models, but this did not explain much variation even in isolation 
and in the multivariate analysis its effect approaches zero;therefore it is not reported here. 
 Regression coefficients of the three indices and autonomy are reported in Table Six 
along with the amount of variance explained. As can be observed, a substantial amount of the 
variance of the components is explained and the explanation of the learning index is quite 
robust. The process variables for describing tasks and autonomy to make decisions are the 
strongest predictors of critical thinking, but in general, the best predictor is our index of 
collaborative networks, which we have suggested is really a proxy for diversity of disciplines 
or multi-disciplinarity. And despite the presence of the other indexes, the index of technical 
staff still contributes to the explanation of cross-fertilization and the learning index. 
Similarly, research processes contributes except for the one instance for the component of 
cross-fertilization.  

Conclusion and Discussion 
 The study of how applied scientists in a mission agency learn opens, we think, a 
number of new and interesting questions. This paper has focused on four mechanisms of 
learning, namely the amount of critical thought and the amount of cross-fertilization, that 
scientists report having in the context of their daily work, and the quality of communication 
on their projects and with their management. These are only four mechanisms for learning 
and in future work more should be added. Some might question that we have separated 
mechanisms of learning from the consequences of that learning, such as geophysical papers 
or satellite products but this approach has several advantages. The first and foremost is that it 
allows us to explore the equation knowledge plus learning equals new knowledge or 
innovation (Hage and Meeus, 2006). The second may almost seem a contradiction to this, 
namely that not all learning leads to new knowledge. Indeed, the amount of learning involved 
in the development of different papers or products varies enormously. Thus there is some 
advantage in focusing on the amount of learning that occurs independent of its consequences 
for either innovation or productivity. And given the different kinds of objectives of the nine 



branches within STAR allows us to more easily compare across them. A major limitation of 
our method is that it is measuring scientific learning and not organizational learning as such.  
 As we suggested at the beginning of this paper, it is perhaps better to ask what in 
research prevents learning. One finding about this is that the time allocated to organizational 
work has a negative influence. Furthermore, other research tasks, except work on 
fundamental problems, have little effect. Since the amount of time spent writing contracts, 
supervising them and providing many reports for NOAA is negatively related to the amount 
of learning, we have more confidence that our cognitive approach is capturing scientific 
learning and not just the accumulation of experience as such. Despite these findings, we 
suggest the first and perhaps the most interesting finding is how we have measured research 
work, indicating how complex is the work of scientists and that research work has to be 
divided into separate tasks that vary in in their likelihood of producing learning. 
 And much to our surprise, while the amount of time allocated to doing fundamental 
research has some association to our learning index, it is only a weak predictor of learning 
and in a multivariate model has no effect.  As we have suggested, it is indeed the case that 
one can become more proficient at preparing reports and supervising contractors but this is 
not the kind of learning that is our concern in this paper. In other research, one might want to 
measure these other kinds of learning but our objective is to call attention to the importance 
of scientific learning as a very special and important category of learning. 
 The second major finding is while the amount of time allocated to fundamental 
research is not that important and the specific kind of objective in this research has almost no 
impact, it is how the time is spent and with whom the time is spent that makes a difference. In 
these findings lie some important recommendations for scientific managers. Spending time 
on challenging problems produces the most learning as we have measured it.  
 We measured three kinds of networks – project, cross-project and external. These 
contribute to learning and are especially important for good communication on project teams 
and with management, which is consistent with a large product development literature that 
has focused on outcomes (Brown and Eisenhardt, 1995; Keller, 2001). We separated out one 
category of project team members in measuring the quality and mix of the technical staff; 
they do have an effect on how much scientists learn, something which has not received much 
attention.  

Finally, the last finding worth emphasizing is that in general and perhaps quite 
expectedly, when one examines the multivariate analysis, critical thought is influenced more 
by how the research time is spent and autonomy and cross-fertilization by whom it is spent 
with, external collaborators and quality technical staff. Of these indices, networks is generally 
the more powerful, followed by research processes and autonomy. These findings need to be 
replicated among geophysicists in other research organizations than STAR (NOAA itself has 
a number of distinct research entities) and among other broad disciplines because one could 
easily imagine that learning patterns vary considerably. Regardless of this variation, knowing 
how to increase the amount of scientific learning is important and especially in the context of 
public research organizations such as STAR dedicated to creating new services for the benefit 
of society. 



Table One: Mean Learning Scores By Wave and Learning Mechanism 
 

  Learning Mechanism and Index of Learning Meansa 

Year Critical 
Thought 

Cross-
fertilization 

Communication 
on projects 

Communication 
with 
management 

Index of 
Learning 

2005 3.67 3.05 3.81 3.12 3.33 
2007 4.07 3.16 3.98 3.55 3.55 
2009 3.58 3.38 4.16 3.52 3.52 
 



Figure One 
Indices Describing the Organization of Research 

 
 
 
Construct Indicatorsa  
Research Process Tasks 1. Sense of challenge 
 2. Time to think creatively 
 3. Freedom to explore new ideas 
 
Collaborative Networks 1.  Project teamwork  
 2. Cross-project teamwork 
 3. External collaborations 
 
Technical Staff 1. Abundance of high quality staff 
 2. Mix of staff 
  
a. All indicators measured with the following five-point scale as percent of time: 
0 to 20%, 21 to 40%, 41 to 60%, 61 to 80%, and 81 to 100%. NA was also an option.  



Table Two: Zero-order correlations between research tasks and the amount of learning 
   Learning Mechanisms and Index of Learning 

Research Tasksa Critical 
Thought 

Cross-
fertilization 

Commu-
nication 
on 
projects 

Commu-
nication 
with 
management 

Index of 
Learning 

Routine technical -0.02 0.06 0.02 0.12 0.06 
For fundamental 
understanding 

 0.20*  0.21* 0.04 0.21*  0.21* 

Professional work -0.02 0.07 0.13 0.08 0.08 
Organizational work -0.15  -0.26** -0.10 -0.29***  -0.25** 
Education, outreach  0.07 0.09 -0.07 0.06 0.05 

a. Scientists reported the actual percent time that they spent in each of these five tasks 
plus an other category that few selected. 

b. * p < .-5, ** p < .01, *** p < .01 
c. These results are sensitive to the inclusion/exclusion of five cases that reported 

spending 0% of their time in fundamental research. Three of them did not answer the 
question on the distribution of research time; two of them reported spending 100% of 
their time on “other” research tasks. In this table we have excluded these five. 

 



Table Three 
Fundamental Research Objectives and the Amount of Learning 

 
   Learning Mechanisms and Index of Learning 

Research Objectivea Critical 
Thought 

Cross-
fertil-
ization 

Commu-
nication 
on 
projects 

Commu-
nication with 
management 

Index of 
Learning 

Causes of errors -0.09 -0.04 -0.01 -0.01 -0.05 
Improve algorithms -0.04 -0.09 0.03 -0.05 -0.05 
Review sensor designs  0.00 -0.12 -0,05 -0.10 -0.09 
Review models -0.01 0.27*** 0.20* 0.13 0.19* 

a. Scientists reported what percent of their time was allocated to each of these different 
kinds of basic and applied research objectives common in STAR. 

b. * p < .05, ** p < .01 



Table Four 
Research Processes and the Amount of Learning 

Zero-order correlations 
 

   Learning Mechanisms and Index of Learning 
Research Processes Critical 

Thought 
Cross-
fertilization 

Commu-
nication 
on 
projects 

Commu-
nication 
with 
management 

Index of 
Learning 

Challenge 0.47*** 0.46*** 0.41*** 0.44*** 0.56*** 
Creativity 0.23** 0.19* 0.13 0.33*** 0.28** 
Freedom to explore  0.36*** 0.33*** 0.19* 0.40*** 0.41*** 
Autonomy 0.46*** 0.25** 0.27** 0.43*** 0.45*** 
a. * p < .05, ** p < .01, *** p < .001 

 



Table Five 
Networks, Quality of Staff and the Amount of Learning:  

Zero-order Correlations 
 

   Learning Mechanisms and Index of Learning 
Kind of Networks 
and Quality of Staff 

Critical 
Thought 

Cross-
fertilization 

Commu-
nication on 

projects 

Commu-
nication with 
management 

Index of 
Learning 

Project teamwork  0.34***  0.38*** 0.68*** 0.46***  0.59*** 
Cross-project 
teamwork 

 0.33***  0.56*** 0.45*** 0.49***  0.58*** 

External networks 0.20*  0.28** 0.42*** 0.37*** 0.40*** 
Quality of 
technical staff 

 0.34***  0.36*** 0.28*** 0.29***  0.40*** 

Mix of specialties  0.36***  0.40*** 0.35*** 0.44***  0.49*** 
a. * p < .05, ** p < .01, ***, p < .001 



Table Six 
Multi-variate Analysis of Research Organization Attributes  

and Learning 
Standardized Coefficients 

 
   Learning Mechanisms and Index of Learning 

Research 
Organization 

Critical 
Thought 

Cross-
fertilization 

Commu-
nication on 
projects 

Commu-
nication with 
management 

Index of 
Learning 

Intercept  0.00 0.00 0.91* -0.99*  -0.28 
Research processes  0.33***  0.25** 0.08 0.35***  0.26*** 
Networks  0.23*  0.47*** 0.65*** 0.53***  0.51*** 
Technical staff   0.11  0.18* 0.07 0.06  0.11* 
Autonomy 0.39*** 0.01 0.05 0.28** 0.18** 
Variance explained 
(adj.) 

 0.35 0.36 0.46 0.48 0.62 

a. * p < .05, ** p < .01, *** p < .001 
 
 
 
 


